Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

Q is empty.


QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A(b(a(c(x1)))) → A(a(a(x1)))
A(b(a(c(x1)))) → A(c(c(a(a(a(x1))))))
A(b(a(c(x1)))) → A(x1)
A(b(a(c(x1)))) → A(a(x1))

The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(a(c(x1)))) → A(a(a(x1)))
A(b(a(c(x1)))) → A(c(c(a(a(a(x1))))))
A(b(a(c(x1)))) → A(x1)
A(b(a(c(x1)))) → A(a(x1))

The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(a(c(x1)))) → A(a(a(x1)))
A(b(a(c(x1)))) → A(x1)
A(b(a(c(x1)))) → A(a(x1))

The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(a(c(x1)))) → A(a(x1)) at position [0] we obtained the following new rules:

A(b(a(c(x0)))) → A(b(x0))
A(b(a(c(b(a(c(x0))))))) → A(a(c(c(a(a(a(x0)))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
QDP
              ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(a(c(x0)))) → A(b(x0))
A(b(a(c(b(a(c(x0))))))) → A(a(c(c(a(a(a(x0)))))))
A(b(a(c(x1)))) → A(a(a(x1)))
A(b(a(c(x1)))) → A(x1)

The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(b(a(c(x1)))) → A(a(a(x1))) at position [0] we obtained the following new rules:

A(b(a(c(y0)))) → A(b(a(y0)))
A(b(a(c(b(a(c(x0))))))) → A(a(a(c(c(a(a(a(x0))))))))
A(b(a(c(x0)))) → A(a(b(x0)))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(a(c(x0)))) → A(b(x0))
A(b(a(c(b(a(c(x0))))))) → A(a(a(c(c(a(a(a(x0))))))))
A(b(a(c(b(a(c(x0))))))) → A(a(c(c(a(a(a(x0)))))))
A(b(a(c(y0)))) → A(b(a(y0)))
A(b(a(c(x0)))) → A(a(b(x0)))
A(b(a(c(x1)))) → A(x1)

The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We found the following model for the rules of the TRS R. Interpretation over the domain with elements from 0 to 1.c: 0
a: 1 + x0
A: 0
b: 1 + x0
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:

A.0(b.1(a.0(c.0(x0)))) → A.1(b.0(x0))
A.0(b.1(a.0(c.0(x0)))) → A.0(a.1(b.0(x0)))
A.0(b.1(a.0(c.0(b.1(a.0(c.0(x0))))))) → A.1(a.0(c.0(c.1(a.0(a.1(a.0(x0)))))))
A.0(b.1(a.0(c.0(y0)))) → A.0(b.1(a.0(y0)))
A.0(b.1(a.0(c.1(x0)))) → A.0(b.1(x0))
A.0(b.1(a.0(c.1(x0)))) → A.1(a.0(b.1(x0)))
A.0(b.1(a.0(c.0(b.1(a.0(c.1(x0))))))) → A.0(a.1(a.0(c.0(c.0(a.1(a.0(a.1(x0))))))))
A.0(b.1(a.0(c.0(b.1(a.0(c.1(x0))))))) → A.1(a.0(c.0(c.0(a.1(a.0(a.1(x0)))))))
A.0(b.1(a.0(c.1(x1)))) → A.1(x1)
A.0(b.1(a.0(c.1(y0)))) → A.1(b.0(a.1(y0)))
A.0(b.1(a.0(c.0(x1)))) → A.0(x1)
A.0(b.1(a.0(c.0(b.1(a.0(c.0(x0))))))) → A.0(a.1(a.0(c.0(c.1(a.0(a.1(a.0(x0))))))))

The TRS R consists of the following rules:

a.0(x1) → b.0(x1)
a.0(b.1(a.0(c.1(x1)))) → a.0(c.0(c.0(a.1(a.0(a.1(x1))))))
a.0(b.1(a.0(c.0(x1)))) → a.0(c.0(c.1(a.0(a.1(a.0(x1))))))
a.1(x1) → b.1(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
QDP
                      ↳ DependencyGraphProof
                  ↳ SemLabProof2
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A.0(b.1(a.0(c.0(x0)))) → A.1(b.0(x0))
A.0(b.1(a.0(c.0(x0)))) → A.0(a.1(b.0(x0)))
A.0(b.1(a.0(c.0(b.1(a.0(c.0(x0))))))) → A.1(a.0(c.0(c.1(a.0(a.1(a.0(x0)))))))
A.0(b.1(a.0(c.0(y0)))) → A.0(b.1(a.0(y0)))
A.0(b.1(a.0(c.1(x0)))) → A.0(b.1(x0))
A.0(b.1(a.0(c.1(x0)))) → A.1(a.0(b.1(x0)))
A.0(b.1(a.0(c.0(b.1(a.0(c.1(x0))))))) → A.0(a.1(a.0(c.0(c.0(a.1(a.0(a.1(x0))))))))
A.0(b.1(a.0(c.0(b.1(a.0(c.1(x0))))))) → A.1(a.0(c.0(c.0(a.1(a.0(a.1(x0)))))))
A.0(b.1(a.0(c.1(x1)))) → A.1(x1)
A.0(b.1(a.0(c.1(y0)))) → A.1(b.0(a.1(y0)))
A.0(b.1(a.0(c.0(x1)))) → A.0(x1)
A.0(b.1(a.0(c.0(b.1(a.0(c.0(x0))))))) → A.0(a.1(a.0(c.0(c.1(a.0(a.1(a.0(x0))))))))

The TRS R consists of the following rules:

a.0(x1) → b.0(x1)
a.0(b.1(a.0(c.1(x1)))) → a.0(c.0(c.0(a.1(a.0(a.1(x1))))))
a.0(b.1(a.0(c.0(x1)))) → a.0(c.0(c.1(a.0(a.1(a.0(x1))))))
a.1(x1) → b.1(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 6 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                    ↳ QDP
                      ↳ DependencyGraphProof
QDP
                  ↳ SemLabProof2
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A.0(b.1(a.0(c.0(x0)))) → A.0(a.1(b.0(x0)))
A.0(b.1(a.0(c.0(y0)))) → A.0(b.1(a.0(y0)))
A.0(b.1(a.0(c.1(x0)))) → A.0(b.1(x0))
A.0(b.1(a.0(c.0(b.1(a.0(c.1(x0))))))) → A.0(a.1(a.0(c.0(c.0(a.1(a.0(a.1(x0))))))))
A.0(b.1(a.0(c.0(x1)))) → A.0(x1)
A.0(b.1(a.0(c.0(b.1(a.0(c.0(x0))))))) → A.0(a.1(a.0(c.0(c.1(a.0(a.1(a.0(x0))))))))

The TRS R consists of the following rules:

a.0(x1) → b.0(x1)
a.0(b.1(a.0(c.1(x1)))) → a.0(c.0(c.0(a.1(a.0(a.1(x1))))))
a.0(b.1(a.0(c.0(x1)))) → a.0(c.0(c.1(a.0(a.1(a.0(x1))))))
a.1(x1) → b.1(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
As can be seen after transforming the QDP problem by semantic labelling [33] and then some rule deleting processors, only certain labelled rules and pairs can be used. Hence, we only have to consider all unlabelled pairs and rules (without the decreasing rules for quasi-models).

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
QDP
                      ↳ QDPToSRSProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(a(c(x0)))) → A(b(x0))
A(b(a(c(b(a(c(x0))))))) → A(a(a(c(c(a(a(a(x0))))))))
A(b(a(c(y0)))) → A(b(a(y0)))
A(b(a(c(x0)))) → A(a(b(x0)))
A(b(a(c(x1)))) → A(x1)

The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
QTRS
                          ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))
A(b(a(c(x0)))) → A(b(x0))
A(b(a(c(b(a(c(x0))))))) → A(a(a(c(c(a(a(a(x0))))))))
A(b(a(c(y0)))) → A(b(a(y0)))
A(b(a(c(x0)))) → A(a(b(x0)))
A(b(a(c(x1)))) → A(x1)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))
A(b(a(c(x0)))) → A(b(x0))
A(b(a(c(b(a(c(x0))))))) → A(a(a(c(c(a(a(a(x0))))))))
A(b(a(c(y0)))) → A(b(a(y0)))
A(b(a(c(x0)))) → A(a(b(x0)))
A(b(a(c(x1)))) → A(x1)

The set Q is empty.
We have obtained the following QTRS:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → b(x)
a(b(a(c(x)))) → a(c(c(a(a(a(x))))))
A(b(a(c(x)))) → A(b(x))
A(b(a(c(b(a(c(x))))))) → A(a(a(c(c(a(a(a(x))))))))
A(b(a(c(x)))) → A(b(a(x)))
A(b(a(c(x)))) → A(a(b(x)))
A(b(a(c(x)))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
QTRS
                              ↳ DependencyPairsProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → b(x)
a(b(a(c(x)))) → a(c(c(a(a(a(x))))))
A(b(a(c(x)))) → A(b(x))
A(b(a(c(b(a(c(x))))))) → A(a(a(c(c(a(a(a(x))))))))
A(b(a(c(x)))) → A(b(a(x)))
A(b(a(c(x)))) → A(a(b(x)))
A(b(a(c(x)))) → A(x)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(x))))))) → C(c(a(a(A(x)))))
C(a(b(c(a(b(A(x))))))) → A1(a(A(x)))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(c(a(b(A(x))))))) → A1(a(c(c(a(a(A(x)))))))
C(a(b(c(a(b(A(x))))))) → A1(c(c(a(a(A(x))))))
C(a(b(c(a(b(A(x))))))) → A1(a(a(c(c(a(a(A(x))))))))
C(a(b(c(a(b(A(x))))))) → A1(A(x))
C(a(b(a(x)))) → C(a(x))
C(a(b(A(x)))) → A1(A(x))
C(a(b(a(x)))) → A1(c(c(a(x))))
C(a(b(c(a(b(A(x))))))) → C(a(a(A(x))))
C(a(b(a(x)))) → A1(a(c(c(a(x)))))
C(a(b(a(x)))) → A1(a(a(c(c(a(x))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
QDP
                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(x))))))) → C(c(a(a(A(x)))))
C(a(b(c(a(b(A(x))))))) → A1(a(A(x)))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(c(a(b(A(x))))))) → A1(a(c(c(a(a(A(x)))))))
C(a(b(c(a(b(A(x))))))) → A1(c(c(a(a(A(x))))))
C(a(b(c(a(b(A(x))))))) → A1(a(a(c(c(a(a(A(x))))))))
C(a(b(c(a(b(A(x))))))) → A1(A(x))
C(a(b(a(x)))) → C(a(x))
C(a(b(A(x)))) → A1(A(x))
C(a(b(a(x)))) → A1(c(c(a(x))))
C(a(b(c(a(b(A(x))))))) → C(a(a(A(x))))
C(a(b(a(x)))) → A1(a(c(c(a(x)))))
C(a(b(a(x)))) → A1(a(a(c(c(a(x))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 9 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
QDP
                                      ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(x))))))) → C(c(a(a(A(x)))))
C(a(b(c(a(b(A(x))))))) → C(a(a(A(x))))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(c(a(b(A(x))))))) → C(c(a(a(A(x))))) at position [0] we obtained the following new rules:

C(a(b(c(a(b(A(y0))))))) → C(c(a(b(A(y0)))))
C(a(b(c(a(b(A(y0))))))) → C(c(b(a(A(y0)))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
QDP
                                          ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(y0))))))) → C(c(a(b(A(y0)))))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(c(a(b(A(x))))))) → C(a(a(A(x))))
C(a(b(c(a(b(A(y0))))))) → C(c(b(a(A(y0)))))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
QDP
                                              ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(y0))))))) → C(c(a(b(A(y0)))))
C(a(b(c(a(b(A(x))))))) → C(a(a(A(x))))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(c(a(b(A(x))))))) → C(a(a(A(x)))) at position [0] we obtained the following new rules:

C(a(b(c(a(b(A(y0))))))) → C(b(a(A(y0))))
C(a(b(c(a(b(A(y0))))))) → C(a(b(A(y0))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
QDP
                                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(y0))))))) → C(b(a(A(y0))))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(c(a(b(A(y0))))))) → C(c(a(b(A(y0)))))
C(a(b(c(a(b(A(y0))))))) → C(a(b(A(y0))))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
QDP
                                                      ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(y0))))))) → C(c(a(b(A(y0)))))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(c(a(b(A(y0))))))) → C(a(b(A(y0))))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(c(a(b(A(y0))))))) → C(c(a(b(A(y0))))) at position [0] we obtained the following new rules:

C(a(b(c(a(b(A(x0))))))) → C(b(A(x0)))
C(a(b(c(a(b(A(x0))))))) → C(b(a(A(x0))))
C(a(b(c(a(b(A(x0))))))) → C(A(x0))
C(a(b(c(a(b(A(x0))))))) → C(a(b(A(x0))))
C(a(b(c(a(b(A(y0))))))) → C(c(b(b(A(y0)))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
QDP
                                                          ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(x0))))))) → C(b(a(A(x0))))
C(a(b(c(a(b(A(x0))))))) → C(A(x0))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(c(a(b(A(y0))))))) → C(c(b(b(A(y0)))))
C(a(b(c(a(b(A(x0))))))) → C(b(A(x0)))
C(a(b(c(a(b(A(y0))))))) → C(a(b(A(y0))))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
QDP
                                                              ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(x)))) → C(c(a(x)))
C(a(b(c(a(b(A(y0))))))) → C(a(b(A(y0))))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(c(a(b(A(y0))))))) → C(a(b(A(y0)))) at position [0] we obtained the following new rules:

C(a(b(c(a(b(A(y0))))))) → C(b(b(A(y0))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
QDP
                                                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(c(a(b(A(y0))))))) → C(b(b(A(y0))))
C(a(b(a(x)))) → C(c(a(x)))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
QDP
                                                                      ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(x)))) → C(c(a(x)))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(x)))) → C(c(a(x))) at position [0] we obtained the following new rules:

C(a(b(a(b(A(x0)))))) → C(b(a(A(x0))))
C(a(b(a(x0)))) → C(c(b(x0)))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(A(x0)))))) → C(b(A(x0)))
C(a(b(a(b(c(a(b(A(x0))))))))) → C(a(a(a(c(c(a(a(A(x0)))))))))
C(a(b(a(b(A(x0)))))) → C(a(b(A(x0))))
C(a(b(a(b(A(x0)))))) → C(A(x0))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
QDP
                                                                          ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(A(x0)))))) → C(b(a(A(x0))))
C(a(b(a(x0)))) → C(c(b(x0)))
C(a(b(a(b(c(a(b(A(x0))))))))) → C(a(a(a(c(c(a(a(A(x0)))))))))
C(a(b(a(b(A(x0)))))) → C(b(A(x0)))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(A(x0)))))) → C(a(b(A(x0))))
C(a(b(a(b(A(x0)))))) → C(A(x0))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
QDP
                                                                              ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(x0))))))))) → C(a(a(a(c(c(a(a(A(x0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(A(x0)))))) → C(a(b(A(x0))))
C(a(b(a(x)))) → C(a(x))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(x0))))))))) → C(a(a(a(c(c(a(a(A(x0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(a(c(c(a(a(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
QDP
                                                                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(A(x0)))))) → C(a(b(A(x0))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
QDP
                                                                                      ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(A(x0)))))) → C(a(b(A(x0))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(A(x0)))))) → C(a(b(A(x0)))) at position [0] we obtained the following new rules:

C(a(b(a(b(A(y0)))))) → C(b(b(A(y0))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
QDP
                                                                                          ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(A(y0)))))) → C(b(b(A(y0))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
QDP
                                                                                              ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(a(A(y0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(b(c(c(a(a(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
QDP
                                                                                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
QDP
                                                                                                      ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(a(A(y0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(a(c(c(b(a(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
QDP
                                                                                                          ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
QDP
                                                                                                              ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(a(A(y0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(b(c(c(b(a(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
QDP
                                                                                                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
QDP
                                                                                                                      ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(a(A(y0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(b(b(c(c(a(a(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
QDP
                                                                                                                          ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(b(b(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
QDP
                                                                                                                              ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(b(b(A(y0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Narrowing
QDP
                                                                                                                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Narrowing
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ DependencyGraphProof
QDP
                                                                                                                                      ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(b(b(A(y0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(b(c(c(b(b(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Narrowing
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Narrowing
QDP
                                                                                                                                          ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(a(b(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Narrowing
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Narrowing
                                                                                                                                        ↳ QDP
                                                                                                                                          ↳ DependencyGraphProof
QDP
                                                                                                                                              ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(a(A(y0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(b(b(c(c(b(a(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Narrowing
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Narrowing
                                                                                                                                        ↳ QDP
                                                                                                                                          ↳ DependencyGraphProof
                                                                                                                                            ↳ QDP
                                                                                                                                              ↳ Narrowing
QDP
                                                                                                                                                  ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(b(b(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Narrowing
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Narrowing
                                                                                                                                        ↳ QDP
                                                                                                                                          ↳ DependencyGraphProof
                                                                                                                                            ↳ QDP
                                                                                                                                              ↳ Narrowing
                                                                                                                                                ↳ QDP
                                                                                                                                                  ↳ DependencyGraphProof
QDP
                                                                                                                                                      ↳ Narrowing
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(b(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(b(b(A(y0))))))))) at position [0] we obtained the following new rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(b(b(c(c(b(b(A(y0)))))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Narrowing
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Narrowing
                                                                                                                                        ↳ QDP
                                                                                                                                          ↳ DependencyGraphProof
                                                                                                                                            ↳ QDP
                                                                                                                                              ↳ Narrowing
                                                                                                                                                ↳ QDP
                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                    ↳ QDP
                                                                                                                                                      ↳ Narrowing
QDP
                                                                                                                                                          ↳ DependencyGraphProof
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(b(b(b(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ Narrowing
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ Narrowing
                                                                ↳ QDP
                                                                  ↳ DependencyGraphProof
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ DependencyGraphProof
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ Narrowing
                                                                                                ↳ QDP
                                                                                                  ↳ DependencyGraphProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Narrowing
                                                                                                        ↳ QDP
                                                                                                          ↳ DependencyGraphProof
                                                                                                            ↳ QDP
                                                                                                              ↳ Narrowing
                                                                                                                ↳ QDP
                                                                                                                  ↳ DependencyGraphProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ Narrowing
                                                                                                                        ↳ QDP
                                                                                                                          ↳ DependencyGraphProof
                                                                                                                            ↳ QDP
                                                                                                                              ↳ Narrowing
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                    ↳ QDP
                                                                                                                                      ↳ Narrowing
                                                                                                                                        ↳ QDP
                                                                                                                                          ↳ DependencyGraphProof
                                                                                                                                            ↳ QDP
                                                                                                                                              ↳ Narrowing
                                                                                                                                                ↳ QDP
                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                    ↳ QDP
                                                                                                                                                      ↳ Narrowing
                                                                                                                                                        ↳ QDP
                                                                                                                                                          ↳ DependencyGraphProof
QDP
                              ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(a(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(a(a(A(y0)))))))))
C(a(b(a(b(a(x0)))))) → C(a(a(a(c(c(a(x0)))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(b(a(c(c(b(b(A(y0)))))))))
C(a(b(a(x)))) → C(a(x))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(b(c(c(a(b(A(y0)))))))))
C(a(b(a(b(c(a(b(A(y0))))))))) → C(a(a(a(c(c(a(b(A(y0)))))))))

The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))
c(a(b(A(x)))) → b(A(x))
c(a(b(c(a(b(A(x))))))) → a(a(a(c(c(a(a(A(x))))))))
c(a(b(A(x)))) → a(b(A(x)))
c(a(b(A(x)))) → b(a(A(x)))
c(a(b(A(x)))) → A(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → b(x)
a(b(a(c(x)))) → a(c(c(a(a(a(x))))))
A(b(a(c(x)))) → A(b(x))
A(b(a(c(b(a(c(x))))))) → A(a(a(c(c(a(a(a(x))))))))
A(b(a(c(x)))) → A(b(a(x)))
A(b(a(c(x)))) → A(a(b(x)))
A(b(a(c(x)))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ SemLabProof
                  ↳ SemLabProof2
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                              ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → b(x)
a(b(a(c(x)))) → a(c(c(a(a(a(x))))))
A(b(a(c(x)))) → A(b(x))
A(b(a(c(b(a(c(x))))))) → A(a(a(c(c(a(a(a(x))))))))
A(b(a(c(x)))) → A(b(a(x)))
A(b(a(c(x)))) → A(a(b(x)))
A(b(a(c(x)))) → A(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → b(x1)
a(b(a(c(x1)))) → a(c(c(a(a(a(x1))))))

The set Q is empty.
We have obtained the following QTRS:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → b(x)
c(a(b(a(x)))) → a(a(a(c(c(a(x))))))

Q is empty.